27 May 2020

WINTECH TESTING & CERTIFICATION by UL

Technical Report – R20933 CWCT – Standard for systemised building envelopes – 2005

Fairview Europe Ltd Fibre Cement Cladding Panel

Contents

1.	Introduction	2
2.	Summary of Results	3
3.	Description of Test Sample	5
4.	Test Arrangement	8
5.	Test Procedures	.10
6.	Test Results	.11
7.	System Drawings	.14
8.	Support Steelwork Drawing	.33
9.	Dismantling	.34

1. Introduction

This report describes tests carried in order to determine the weather tightness of the sample with respect to wind resistance on sample supplied as follow:

Test Details		
Customer:	Fairview Europe Ltd	
	7 Robins Drive	
	Castlefields Industrial Estate	
	Bridgwater	
	TA6 4DL	
Product Tested:	Fibre Cement Cladding Panel	
Date of Test:	25 th and 26 th February 2020	
Test Conducted at:	Wintech Engineering Limited	
	Halesfield 2	
	Telford	
	Shropshire	
	TF7 4QH	
Test Conducted by:	P Seymour – Laboratory Technician	
	D Reynolds – Engineering Technician	
	J Dove – Laboratory Assistant	
Test Supervised by:	M Cox – Engineering Leader	
Test Witnessed by:	G Besley – Fairview Europe Ltd	

Report Authorisation		
Report Compiled by:	D Price – Senior Engineering Associate	
Authorised by:	M Wass – Engineering Manager	

Wintech Engineering Ltd is accredited by the United Kingdom Accreditation Service as UKAS Testing Laboratory No. 2223.

REPRODUCTION OF THIS DOCUMENT IN WHOLE OR ANY PART THEREOF MUST NOT BE MADE WITHOUT PRIOR WRITTEN PERMISSION FROM WINTECH ENGINEERING LTD.

This report and the results shown within are based upon the information, drawings, samples and tests referred to in the report. The results obtained do not necessarily relate to samples from the production line of the above-named company and in no way constitute any form of representation or warranty as to the performance or quality of any products supplied or to be supplied by them. Wintech Engineering Ltd or its employees accept no liability for any damages, charges, cost or expenses in respect of or in relation to any damage to any property or other loss whatsoever arising either directly or indirectly from the use of the report.

2. Summary of Results

2.1 The test methods

The test methods were in accordance with the following standards:

CWCT Standard Test Methods for Building Envelopes - December 2005		
Wind Resistance – Serviceability	CWCT Section 11	
Wind Resistance – Safety	CWCT Section 12	

WINTECH TESTING & CERTIFICATION by UL

Summary of Results

2.2

The following summarises the results of testing carried out, in accordance with the relevant testing and classification standards.

The performance of the sample tested has been assessed against the criteria described in the below standards with the exception of the deflection limits which were pre-agreed with the client prior to the testing being conducted. The results detailed in this test report and marked with an asterisk (*) are within the measurement uncertainty. The result and classifications reported indicates the greater probability of result certainty.

Test Type	Peak Test Pressure	Result	Date of Test
Test 1 – Wind Resistance (Serviceability) – Backing Wall	2400 Pa	Pass*	25.02.20
Test 2 – Wind Resistance (Serviceability) – Cavity	2400 Pa	Pass*	25.02.20
Test 3 - Wind Resistance – Safety – Backing Wall	3600 Pa	Pass*	25.02.20
Test 4 - Wind Resistance – Safety – Cavity	3600 Pa	Pass*	26.02.20
Dismantle, Inspect & Report		Sample Passed	

More comprehensive details are reported in Section 6.

These results are valid only for the conditions under which the test was conducted.

All measurement devices, instruments and other relevant equipment were calibrated and traceable to National Standards.

3. Description of Test Sample

The description of the test sample in this section has been supplied by the customer and has not been verified by Wintech Engineering Limited.

See Section 7 for test sample drawings as supplied by Fairview Europe Ltd.

Product Description			
Full product name:	Ceramapanel		
Product type:	Architectural rainscreen panel		
Product description:	Through coloured compressed fibre cement panel		
Manufactured by:	Fairview		

Support Framing and bracketry

Material:	Aluminium
Finish:	Mill-finish
Vertical rail Ref:	VFTR12560, Vitrafix VF1 T Rail, 125x60mm
	VFLR50, Vitrafix VF1 L Rail, 50x50mm
Horizontal rail Ref:	Vitrafix VF2 Rail, 30x190mm
	Vitrafix VF2 Rail, 30x105mm
Fixing method (rail to backing wall):	Self-drilling screw through sheathing board fixing into
	light weight steel frame vertical studs
Fixing Ref:	VFSD5.535mm Vitrafix Self-Drilling Screws, 5.5x35mm
Fixing method (bracket to horizontal rail):	Vitrafix self-drilling screw
Fixing Ref:	VFSD5.525mm Vitrafix Self-Drilling Screws, 5.5x25mm
Fixing method (bracket to rail):	Vitrafix self-drilling screw
Fixing Ref:	VFSD4.825mm Vitrafix Self-Drilling Screws, 4.8x25mm
Max Span between vertical rails:	650mm
Max Span between brackets/horizontal rails:	550mm
Brackets ref:	VF160SB, Vitrafix VF1, 160mm single brackets
	VF160DB, Vitrafix VF1, 160mm Double brackets

Panels/tiles

Material:	Compressed Fibre Cement
Material ref (source, spec):	Ceramapanel
Finish:	Natural Textures Raw
Thickness:	10mm and 8mm
Reinforcing:	
Max height of panel:	3050mm
Max width of panel:	1250mm
Max size of panel by area (m2):	3.8125m2
Fixing method:	Face fixed rivets
Bracket/clip ref:	
Screws/fixings ref:	VFSSR4.820, Vitrafix Rivet, 4.8x20mm

Interface Details (curtain wall to window/door inserts)

Window interface detail:	Aluminium pressing/flashing returning into window
	jamb and head
Door interface detail:	Aluminium pressing/flashing returning into door jamb
	and head

Backing Wall

Structural support type:	Light weight steel frame – 150mm studs	
Insulation type:		
Insulation thickness:		
Airtight membrane:	Warptite (Vapour Permeable, Airtight, Self-Adhesive	
	Membrane) by A. Proctor Group	
Watertight membrane:		
Particle board detail:	12mm Y-Wall A1 Sheathing Board	
Sealants and tapes:		
Fixings ref:		

Drawings

- 0-	
Drawing/s must be provides covering the below;	As detailed in Section 7
-Full drawing of sample including front elevation	
-Cross Sections (Panels/Rails Etc.)	
-Hardware Locations	
-Fixings	
-Drainage Points	
Note: drawings are required to show all relevant	
dimensions.	
Test sample size:	9000 x 5000mm

Confirmation

Customer is to confirm that the samples provided for testing are representative of standard production.
Please note: the details given above, as well as the drawings supplied by the customer as confirmed as typical
of normal production are not verified by UL Wintech Engineering Limited.Company:Fairview Europe LtdName:Gavin BesleyPosition:Technical ManagerDate:3rd March 2020

Report No: R20933 Project No: 20933 Page **7** of **41** 27 May 2020

Photograph No. 1

Sample during testing

WINTECH TESTING & CERTIFICATION

Report No: R20933 Project No: 20933 Page **8** of **41** 27 May 2020

by UL

4. Test Arrangement

4.1 Test Chamber

A specimen, supplied for testing in accordance with CWCT requirements, was mounted on to a rigid test chamber constructed from steel, timber and plywood sheeting.

The pressure within the chamber was controlled by means of a centrifugal fan and a system of ducting and valves. The static pressure difference between the outside and inside of the chamber was measured by means of a differential pressure transmitter.

4.2 Instrumentation

4.2.1 Static Pressure

A differential pressure transmitter capable of measuring rapid changes in pressure to an accuracy within 2%, was used to measure the pressure differential across the sample.

4.2.2 Deflection

Digital linear measurement devices with an accuracy of +/- 0.1 mm were used to measure deflection of principle framing members.

4.2.3 Temperature & Humidity

A digital data logger capable of measuring temperature with an accuracy of \pm 1°C and humidity with an accuracy of \pm 5 %Rh was used.

4.2.4 Barometric Pressure

A digital barometer capable of measuring barometric pressure with an accuracy of ± 1 kPa was used.

4.2.5 General

Electronic instrument measurements were scanned by a computer-controlled data logger, which processed and recorded the results.

4.3 Pressure Generation

4.3.1 Static Air Pressure

The air supply system comprised of a centrifugal fan assembly and associated ducting and control valves and was used to create both positive and negative static pressure differentials. The fan provided a constant airflow at the required pressure and period required for the tests.

Note: References are made to both positive and negative pressures in this document, it should be noted that in these instances, positive pressure is when pressure on the weather face of the sample is greater than that on the inside face and vice versa.

All measurement devices, instruments and other relevant equipment were calibrated and are traceable to National Standards.

Report No: R20933 Project No: 20933 Page **9** of **41** 27 May 2020

Figure 1 – Test arrangement

General Arrangement of a Typical Test Assembly

Data logger records all data during tests

WING & CERTIFICATION

Report No: R20933 Project No: 20933 Page **10** of **41** 27 May 2020

by UL

5. Test Procedures

5.1 Sequence of Testing

- Test 1 Wind Resistance Serviceability Backing Wall Test 2 – Wind Resistance - Serviceability - Cavity
- Test 3 Wind Resistance Safety Backing Wall
- Test 4 Wind Resistance Safety Cavity

5.2 Wind Resistance

5.2.1 Wind Resistance - Serviceability

Three (3) preparatory pulses of 1200 Pa (50% of design wind load) positive pressure were applied to the test sample. Upon returning to 0 Pa, any opening parts of the test specimen were opened and closed five (5) times, secured in the closed position. All deflection sensors were then zeroed.

The sample was then subjected to positive pressure stages of 600, 1200, 1800 and 2400 Pa (25%, 50%, 75% and 100% of design wind load) and held at each step for 15 seconds (± 5 secs).

The deformation status of the sample was recorded at each step at characteristic points as stated in the standard, following which the pressure was reduced to 0 Pa and any residual deformations recorded within 1 hour of the test.

The above test sequence was then repeated, including preparation pulses, at a negative pressure differential.

Following each of the above tests, the sample was inspected for permanent deformation or damage.

5.2.2 Wind Resistance - Safety

Three preparatory positive air pressure pulses of 1200 Pa (50% of design wind load) positive pressure were applied to the test sample, and the deflection sensors were zeroed.

The sample was subjected to a positive pressure pulse of 3600 Pa (2400 Pa x 150%). The pressure was applied as rapidly as possible but in not less than 1 second and was maintained for 15 seconds (± 5 secs).

Following this pressure pulse and upon returning to zero (0) pressure, residual deformations were recorded and any change in the condition of the specimen was noted.

After the above sequence, a visual inspection was conducted, any moving parts were operated and any damage or functional defects noted.

The above test sequence was then repeated, including preparation pulses, at a negative pressure differential. The deflection sensors were zeroed following the preparation pulses.

Following each of the above tests, the sample was inspected for any permanent deformation or damage.

WINTECH TESTING & CERTIFICATION by UL

Report No: R20933 Project No: 20933 Page **11** of **41** 27 May 2020

6. Test Results

6.1 Wind Resistance

Probe Group Identification	Calculation of deflection
Group A comprised of probes 1, 2 & 3	= Probe 2 – ((Probe 1 + Probe 3)/2)
Group B comprised of probes 4, 5 & 6	= Probe 5 – ((Probe 4 + Probe 6)/2)
Group C comprised of probes 7, 8 & 9	= Probe 8 – ((Probe 7 + Probe 9)/2)
Group D comprised of probes 10, 11 & 12	= Probe 11 – ((Probe 10 + Probe 12)/2)

An inspection carried out following tests 1, 2, 3 and 4, after both positive and negative pressure testing, showed no evidence of any permanent deformation or damage to the test sample.

Positions of Deflection Measurement Probes CPR-8 CPR-7 CPR-10 CPR-11 CPR-12 5 CF0-13 2 CPR-CPR-4 CPR-18 CPR-9 CPR-18 CPR-9 g 8₋₁₇ CPR-3 CPR-14 CPR-16 CPR-2 CPR-2 PPP-CPR--PR-놂 Ř 7 CPR-15 CPR-19 CP-20 CP-24 CP-26 CP-2 CP-19 CP-23 CP-25 CP-21 CP-19 CP-23 CP-25 12 206 CP-11 CP-13 CP-9 PP-1 CP-18 ^{CP-3} 10 CP-5 WINDOW (NON-OPEN) CP-17 CP-2 CP-17 CP-2 CP-10 CP-12 CP-16 CP-4 CP-8 CP-1 CP-15 CP-14

Figure 2

View from Outside Not to Scale

6.2.1 Tests 3 & 4 - Wind Resistance, Serviceability

Temperatures (°C)		Aml	bient	8.0				
Moscurod	Longth of			Alloy	vable Defle	ction		
Framing Member (mm)		Ratio	Calculat (mm)	ted Ratio	Deficiency Deficiency Deficiency Calcu nly (m	ulated nm)	Ratio Info Only	Calculated (mm)
Group A	825	L/90	9.2	L/36	0 2	.3	L/100	8.3
Group B	820	L/90	9.1	L/36	0 2	.3	L/100	8.2
Group C	580	L/90	6.4	L/36	0 1	6	L/100	5.8
Group D	670	L/90	7.4	L/36	0 1	9	L/100	6.7

Frontal deflection shall recover by either 95%, or 1mm, whichever the greater.

6.2.1.1 Wind Resistance, Serviceability - Positive Pressure

Positive Pressure	Results				
Ра	Group A	Group B	Group C	Group D	
0	0.0	0.0	0.0	0.0	
600	1.1	0.6	0.1	0.4	
1200	2.3	1.2	0.4	0.7	
1800	3.5	1.8	0.6	1.1	
2400	4.6	2.3	1.0	2.0	
Residuals Immediately following test	0.2	0.0	0.1	0.1	

6.2.1.2 Wind Resistance, Serviceability - Negative Pressure

Negative Pressure	Results				
Ра	Group A	Group B	Group C	Group D	
0	0.0	0.0	0.0	0.0	
600	2.2	0.5	0.3	0.9	
1200	4.7	1.8	0.6	2.0	
1800	6.9	2.9	1.0	2.7	
2400	8.4	3.6	1.4	3.2	
Residuals Immediately following test	0.1	0.1	0.1	0.3	

6.2.2 Tests 5 & 6 - Wind Resistance, Safety

Temperatures (°C)	Ambient	5.0
• • • •		

Measured	l Length of	Allowable Residual Deformation		
Framing Member (mm)		Ratio	Calculated (mm)	
Group A	825	L/500	1.7	
Group B	820	L/500	1.6	
Group C	580	L/500	1.2	
Group D	670	L/500	1.3	

6.2.2.1 Wind Resistance, Safety - Positive Pressure

Positive Pressure	Results				
Ра	Group A	Group B	Group C	Group D	
0	0.0	0.0	0.0	0.0	
3600	6.4	3.3	1.7	7.1	
Residuals Immediately following test	0.0	0.0	0.1	0.1	

6.2.2.2 Wind Resistance, Safety - Negative Pressure

Negative Pressure	Results				
Ра	Group A	Group B	Group C	Group D	
0	0.0	0.0	0.0	0.0	
3600	5.3	5.3	2.6	0.7	
Residuals Immediately following test	0.4	0.1	0.1	0.2	

Note: The standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%, for the above measurements is ± 2.4 % of the reading

Report No: R20933 Project No: 20933 Page **14** of **41** 27 May 2020

7. System Drawings

Report No: R20933 Project No: 20933 Page **15** of **41** 27 May 2020

Report No: R20933 Project No: 20933 Page **16** of **41** 27 May 2020

WINTERING & CERTIFICATION

Report No: R20933 Project No: 20933 Page **17** of **41** 27 May 2020

Report No: R20933 Project No: 20933 Page **18** of **41** 27 May 2020

Report No: R20933 Project No: 20933 Page **19** of **41** 27 May 2020

Report No: R20933 Project No: 20933 Page **20** of **41** 27 May 2020

Report No: R20933 Project No: 20933 Page **21** of **41** 27 May 2020

Report No: R20933 Project No: 20933 Page **22** of **41** 27 May 2020

Report No: R20933 Project No: 20933 Page **23** of **41** 27 May 2020

Report No: R20933 Project No: 20933 Page **24** of **41** 27 May 2020

WINTECH TESTING & CERTIFICATION

Report No: R20933 Project No: 20933 Page **25** of **41** 27 May 2020

WINTECH TESTING & CERTIFICATION

Report No: R20933 Project No: 20933 Page **27** of **41** 27 May 2020

Report No: R20933 Project No: 20933 Page **28** of **41** 27 May 2020

Report No: R20933 Project No: 20933 Page **29** of **41** 27 May 2020

WINTECH TESTING & CERTIFICATION

WINTERTING & CERTIFICATION

Report No: R20933 Project No: 20933 Page **31** of **41** 27 May 2020

WINTERTING & CERTIFICATION

Report No: R20933 Project No: 20933 Page **32** of **41** 27 May 2020

WINTERT

8. Support Steelwork Drawing

WINTECH TESTING & CERTIFICATION by UL

9. Dismantling

The dismantling was conducted on 3rd March 2020 by representatives of Fairview Europe Ltd and was witnessed by representatives of Wintech Engineering Ltd.

There was no water evident in the system in parts designed not to be wetted, and it was found that the system fully complied with the system drawings in Section 7 provided by Fairview Europe Ltd at the time of the dismantle.

Sample prior to dismantle

Photograph No. 2

Internal window pod detail

WINTERTING & CERTIFICATION by UL

Report No: R20933 Project No: 20933 Page **35** of **41** 27 May 2020

Photograph No. 4

Internal window pod detail

Photograph No. 5

External window pod detail

Photograph No. 6

Window pod interface detail

WINTERT

by UL

Photograph No. 7

Report No: R20933 Project No: 20933 Page **36** of **41** 27 May 2020

Rivet fixing

Photograph No. 8

Photograph No. 9

Typical joint between panels

Rail, helping hand and window pod detail

WINTECH TESTING & CERTIFICATION

Report No: R20933 Project No: 20933 Page **37** of **41** 27 May 2020

by UL

Photograph No. 10

Photograph No. 11

Photograph No. 12

Helping hand and rail detail

Helping hand and rail detail

Rail layout on bottom section of sample

Report No: R20933 Project No: 20933 Page **38** of **41** 27 May 2020

Photograph No. 13

Photograph No. 14

Full rail layout

Backing wall detail

WINTECH TESTING & CERTIFICATION

Report No: R20933 Project No: 20933 Page **39** of **41** 27 May 2020

by UL

Photograph No. 15

Backing wall and window pod detail, not as per drawings reference 1508-4201 Rev AB, 1508-3001 Rev AB and 1508-4204 Rev AB

Photograph No. 16

Metsec layout

Report No: R20933 Project No: 20933 Page **40** of **41** 27 May 2020

----- END OF REPORT -----

WING & CERTIFICATION

Wintech Testing & Certification is an independent UKAS accredited testing laboratory and certification body. We provide a comprehensive range of services to the building and construction industries, either onsite or at our own state-of-the-art test laboratory in Telford, Shropshire, in the heart of industrial England.

≈ +44 (0) 1952 586580
i sales@wintechtesting.com
[^]⊕ www.wintechtesting.com